Detection and recognition of contour parts based on shape similarity

نویسندگان

  • Xiang Bai
  • Xingwei Yang
  • Longin Jan Latecki
چکیده

Due to distortion, noise, segmentation errors, overlap, and occlusion of objects in digital images, it is usually impossible to extract complete object contours or to segment the whole objects. However, in many cases parts of contours can be correctly reconstructed either by performing edge grouping or as parts of boundaries of segmented regions. Therefore, recognition of objects based on their contour parts seems to be a promising as well as a necessary research direction. The main contribution of this paper is a system for detection and recognition of contour parts in digital images. Both detection and recognition are based on shape similarity of contour parts. For each contour part produced by contour grouping, we use shape similarity to retrieve the most similar contour parts in a database of known contour segments. A shape-based classification of the retrieved contour parts performs then a simultaneous detection and recognition. An important step in our approach is the construction of the database of known contour segments. First complete contours of known objects are decomposed into parts using DCE (Discrete Curve Evolution). Then, their representation is constructed that is invariant to scaling, rotation, and translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contour-based object detection as dominant set computation

Contour-based object detection can be formulated as a matching problem between model contour parts and image edge fragments. We propose a novel solution by treating this problem as the problem of finding dominant sets in weighted graphs. The nodes of the graph are pairs composed of model contour parts and image edge fragments, and the weights between nodes are based on shape similarity. Because...

متن کامل

The role of surface-based representations of shape in visual object recognition.

This study contrasted the role of surfaces and volumetric shape primitives in three-dimensional object recognition. Observers (N = 50) matched subsets of closed contour fragments, surfaces, or volumetric parts to whole novel objects during a whole-part matching task. Three factors were further manipulated: part viewpoint (either same or different between component parts and whole objects), surf...

متن کامل

Object detection by global contour shape

We present a method for object class detection in images based on global shape. A distance measure for elastic shape matching is derived, which is invariant to scale and rotation, and robust against non-parametric deformations. Starting from an over-segmentation of the image, the space of potential object boundaries is explored to find boundaries, which have high similarity with the shape templ...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

A shape-based approach to change detection of lakes using time series remote sensing images

Shape analysis has not been considered in remote sensing as extensively as in other pattern recognition applications. However, shapes such as those of geometric patterns in agriculture and irregular boundaries of lakes can be extracted from the remotely sensed imagery even at relatively coarse spatial resolutions. This paper presents a procedure for efficiently retrieving and representing shape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008